

CNN	=	Neural	Network	 with	a	convoluFon	operaFon	
instead	of	matrix	mulFplicaFon		
in	at	least	one	of	the	layers	

What	are	CNNs	?

airplane		
automobile		
bird		
cat		
deer		

dog		
frog		
horse		
ship		
truck	

Input	example	:	one	image	 Output	example	:	one	class	

Neural Networks

A	typical	CNN	architecture

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Biological neuron &
mathematical model

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution

The convolution operation

The	convoluFon	operaFon	

Convolution Layers

32

32

3

activation map
32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image
5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

A closer look at spatial dimensions:

32

32

3

activation map
32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

=> 5x5 output

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

N

F

F

N
Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Zero-Padding: common to the border

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Pooling

Effect	=	invariance	to	small	translaFons	of	the	input	

Pooling

Pooling

-  makes the representations smaller and more manageable
-  operates over each activation map independently

Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Common settings:

F = 2, S = 2
F = 3, S = 2

Summary

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Activation function

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Leaky
ReLU

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Sigmoid
1.  Saturated neurons “kill” the

gradients
2.  Sigmoid outputs are not zero-

centered
3.  exp() is a bit compute expensive

-  Squashes numbers to range [0,1]
-  Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Squashes numbers to range [-1,1]
-  zero centered (nice)
-  still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

-  Does not saturate (in +region)
-  Very computationally efficient
-  Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

-  Not zero-centered output
-  ReLU units can “die”

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Does not saturate
-  Computationally efficient
-  Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky ReLU

Activation Functions

[Mass et al., 2013] [He et al., 2015]
	

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

-  Use ReLU. Be careful with your learning rates
-  Try out Leaky ReLU / Maxout / ELU
-  Try out tanh but don’t expect much
-  Don’t use sigmoid

In practice

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Weights initialization

•  If	the	weights	in	a	network	start	too	small,		
then	the	signal	shrinks	as	it	passes	through	each	layer	unFl	it’s	too	
Fny	to	be	useful.	

•  If	the	weights	in	a	network	start	too	large,		
then	the	signal	grows	as	it	passes	through	each	layer	unFl	it’s	too	
massive	to	be	useful.	

Weights initialization

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

•  All	zero	iniFalizaFon	
	
	

•  Small	random	numbers	
	
	

•  Draw	weights	from	a	Gaussian	distribuFon		
with	standard	deviaFon	of	sqrt(2/n),		
where	n	is	the	number	of	outputs	to	the	neuron	

Weights initialization

AlexNet example

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

