Artificial Intelligence

Deep Learning and
Convolutional Neural Networks

Ing. Adam Ligocki

Course Supervisor: doc. Ing. Vaclav Jirsik, CSc.

Fully Connected
Neural Network

Fully Connected Neural Network
I

L) wo

e Single neuron represents a —— @ synapse
simple linear equation WoTLo
_ * cell body e 4 b
y=fwx;+...+wx;+ b) —_— f(Z’w“)

output axon

activation
function

 The neural network is a
complex combination of these W2 T2
simple mathematical models

Fully Connected Neural Network

 Neural Networks are a kind of
matrix multiplication representation

- S
Y10x1 = W10x100 © X100x1

* Generally in Machine learning this
technique is called “Linear
Classifier”

iInput layer

hidden layer 1 hidden layer 2

Back Propagation

Back Propagation

 Back propag. Is an algorithm

to iteratively adjust weights
w.r.t. total error to get better
result Iin the next step

AE L AE
AW, = —a——=—a«a -
Jk Aw, Z

s=1

Aij

 The better result In the next
step does not mean better

result at the end of the
learning

dl 1 Yk ’ dk 1¥m 4

+,:' ..+ [vistva L] o
y,~d,), ~d,

) il Z)
.- BN
X ,' (2 F— X / n [.(2) -
Wou

d e,y -y) d e y -y,)

X n (X W {

Wik .
(.,Vl ~d,)-(71 Y (l =V)-“"",'l

”
Zt}‘k d,) o, Villl=3,) w,
k=1

@) —(X)

"y
| NSy e s s
('TJ“\'I(I—'_J) Ld(“k (lk’ﬁk .‘ k‘l -“." “/k
k=]

) ="

m
(_T,..\',(l—.\'/lls_,‘-kzl:u'k —d) O Y ll=y) w,

Chain Rule

AE. AE, Ay, Az

s N A
— —_— Zk
AWie BV Az AW k= Z Tk Ay T
i=1 Jk
P | i(Jy AE, B p
s D) & ysj sj Ayk = Yk k
: 2y i O — doy (1 — yp)
=TT Ay, = %= Aw Vi = ORI\t — Vi
Ao(x)

vl o(x) * (1 = o(x))

Stochastic Gradient Descent

« Common FCNN has ~1000 weights
-> calculate partial derivation of o
matrix of size 1000x1000

e Common CNN has ~10 000 000
weights
-> Mission Impossible

« SGD is an idea of learning neurone
by using only small number of
randomly chosen partial derivatives
of the Total Error w.r.t. weights

History

Perceptron and Fully Connected NN

e 1943 - Mathematical model of neuron + %
(Warren McCulloch and Walter Pitts)

1958 - Perceptron discovery
(Frank Rosenblatt)

1986 - Back Propag discovery

10

Eye as a CNN

Structure of the retina

optic nerve fiber

« Mammal eye consists out of several
types of light-sensitive cells and signal
processing neutrons.

— ganglion cells

— bipolar neurons

 These neurones performs spacial
differential functions over incoming
signal from rods and cones

rod cell

cone cell

e For more informations search for
“Retina structure” on Google

pigment epithelium

© Encyclopaadia Britannica, Inc.

- https://www.britannica.com/science/retinitis-pigmentosa

LeNet (1998)

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

%

32x32 S2: f. ma

5: layer
6@14x1 y F6 layer OUTPUT

120

.-

| Full conAecﬂon Gaussnan connections
Convolutions Subsampling Convolutions Subsamplmg Full connec’uon

-_— .

e

Image from original paper Y. LeCun 1998

Simple characters and numbers classification

e First ever “True Convolutional NN”

12

AlexNet (2012)

l'.:,_ .5/ ------------
5 - ::.' B ,
_ 3 N d
' - 192 192 128 2048 J04ag \dense
48
128 oA
5 ."' r g ..‘n_".".".
N A 13 13
224 5 3¥ . 1 ‘ > A —
. i3 I3 13 dense dense
27 - LN
3. 1000
192 192 128 Max
. 2048 2048
Max' 128 Max pooling
pooling pooling
28% AlexNet, 8 layers

outperformed other CV
techniques

The beginning of intensive
research of the CNN topic

13

2010 201

2012 2013

2014

ZF, 8 layers

VGG, 19 layers
GooglLeNet, 22 layers
| ResNet, 152 layers

(Ensemble)
- SENet

----—------—--q ------------------------------

2015 2016 2017

100% accuracy and reliability not realistic

BN Traditional computer vision
N Deep learning computer vision

Timeline

AModel of Neuron

Back propag

AlexNet. ResNet

)
o

I) :
3 -

1940 1945 1950 14955 1980 1965 1970 1975 1980 1485 1990 1995 2000 2005 2010 T 2015
I |

_-AlphaGo

=== 1=R=R

*
1
I
I
]
I
I

14

Why the AlexNet started it all?

- C3. 1. maeps 10210210
NPUT - lott,uanms S4: 1 maps 1655

1998 _* o e

120 8a) .
LeCun et al.

Full connection SaJussiar

Convolutons Suosampling Conveoluticrns Subsampling Ful conroction
of transistors # of pixels used in training
M 106 107 NIST
pontium-||
2012 | — i Y
" T \./ Fr=1 ‘\l" iGae \Oerse
\ \‘ 7\
. o r) 3\ |) ’,' \
Krizhevsky z " 2 N ;
et al. ‘fD R]dﬂn Ksaon ‘
\ .)\ - .
— - :::“Q J8ah J0a8

of pixels used in training

10" ITMJAGENET

& oy

15

Convolutional Neural Network

e Convolution is a mathematical
operation which combines
features of two input signals into
single result

o In CV the 2 D COnVOI utlon IS -tho https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/

mostly used as a blurring
(suppressing high freq) and edge
(suppressing low freq) filters

e Convolution kernel size is usually
of size 3x3 up to 11x11

17

Convolution in Computer Vision
.

Principle

Feature maps https://en.wikipedia.org/wiki/Convolutional_neural_network

f.maps

Convolutions Subsampling Convolutions Subsampling Fully connected

« CNN is based on the idea of the feature extraction from the input image by using
large number of small convolution kernels

 Low layers extracts simple geometrical shapes (usually edge detectors), higher
layers detects more complex structures

* The output of the highest layer is processed by FC NN classifier
13

Kernel Visualizations

Linearly
separable
classifier

Low-level Mid-level High-level
features features features

rema.
.......
A

- ! —
\) e L
A y

VGG-16 Convil 1 VGG-1

- e L @
)L: 'Ic: ‘FL"

6 Conv3 2

20

Convolutional Neural Network

activation map

__— 32x32x3 Image

5x5x3 filter
32

28

convolve (slide) over all
spatial locations

32 28

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

21

Convolutional Neural Network
eSS

__— 32x32x3 image activation maps
o5x5x3 filter

32

28

convolve (slide) over all
spatial locations

32 28
3 consider a second, green filter

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

22

Convolutional Neural Network

activation maps

32

Convolution Layer

32

3

We stack these up to get a "new image” of size 28x28x6!
Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

23

Convolutional Neural Network

v

/x7 input (spatially)
assume 3x3 filter

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

24

Convolutional Neural Network

7

/x7 input (spatially)
assume 3x3 filter

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

25

Convolutional Neural Network

7

/x7 input (spatially)
assume 3x3 filter

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

20

Convolutional Neural Network

7

/x7 input (spatially)
assume 3x3 filter

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

27

Convolutional Neural Network
eSS

v

/x7 input (spatially)
assume 3x3 filter

=> 5x9 output

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

28

Convolutional Neural Network
eSS

v

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

29

Convolutional Neural Network

/

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung
30

Convolutional Neural Network

/

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

31

Convolutional Neural Network
eSS

N

Output size:
(N -F)/stride + 1

eg.N=7,F=3:

stride 1=>(7-3)/1+1=5
stride 2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

32

Convolutional Neural Network

0

0

0

0

0

o] O O O O

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
In general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung
33

Map Pooling

 Map Pooling layer reduces the 224x224x64

dimension of input layer while the /|f’ | 112x112x64
DOO
/

operation does not reduces . &
information in the signal I
A

— 112
downsampling
112

12 120 | 30| O
224 "
8 [12 | 2 0 2 X 2 Max-Pool 20 | 30
224

e
34 | 70 | 37 | 4 B 37

1121100 | 25 | 12

34 https://computersciencewiki.org/index.php/Max-pooling_/ Pooling

Activation Functions

Sigmoid

- Not zero centered

- Saturation kills gradient

Tanh I - exp() is expensive to calculate

https://towardsdatas com/complete-guide-of-activation-functions-34076e95d044

Activation Functions

10

+ Simple to derivate

RelLU
(Rectified Linear Unit) - |Input value below 0O kills neurone
10
+ Does not have the dead zone
Leaky Rel.U + 10/10 machine learning
engineers like Leaky Relu
- 1 10

36

Activation Functions

e Softmax
e
0(2); = ~ fori = 1,....K
R A
j=1
* Replaces non-linear max operation Softmax

on the output of NN

e Softmax is differentiable -> can be 0.042 0.843
used In back propag

 Normalize the output vector

37

0.114

convl

l

conv2
‘l
convi
//I/ ek 5
I(I(I(I_i_‘ = fe6 fc7 fe8
o |—m———— |
I S e = e e 1o

28 x 28 x 512

.
56 x 56 x 256 Tx7x3512

> 112 x 128

@ convolution+ReLU

@ max pooling
@ fully connected+RelLU

224 x 224 x 64

Learning CNN

Training Dataset

» Splitting the dataset into the Train,
Validation and the Test sets

* For small number of learning data Original Data Set

see the “Cross Validation” :
Train

. : LG .) TeSt
Model is trained on the “Train data Train Valid

e Score on validation data helps to 70% 15% LLA
monitor learning progress

* Score on test data gives the final
performance for the trained model

40

Overfitting

 When NN learns for long enough on “small”
dataset, it starts to memorise features
specific for training data

* QOverfitting effect grows with the complexity .
Of t h e m O d e I https://en.wikipedia.org/wiki/Overfitting

underfitting overfitting

validation error

e See: Occam's razor

* To prevent overfitting use the model with
the lowest validation error, not the training
one

error

training error

model parameter

41 https://www.jeremyjordan.me/evaluating-a-machine-learning-model/

One HotEnd Encoding

* For every single class that NN should
be able to classify there is one

. . (f A i =
dedicate neuron in the output layer 0 — 1, 0, 0. 0

- & == —

e The output value ‘1’ of the neuron i 1) ("‘0 - 0“\

says “This is my class”, the output . LA

value ‘0’ says “Definitely not my — r— ==
class”. 2 —_— 0. 0. 1. 0

& ® = ==

| . @ N ("~ — T
 Representing many classeg by single 3 — 0, 0, 0, 1

output value creates undesirable) — —

relation between neighbour values https://blog.e-kursy.it/deeplearning4j-workshop

42

Train Data Shuffling

* The classes in the input data should
be distributed through the entire
dataset

* Clustering classes next to each other
causes temporary overfitting for
specific class

Augmentations

e Used for small number of training data }' f “

* Artificially generate synthetical data for O
training ~ e

Artificial data helps to improve the training
process and the model robustness

Augmentation techniques
Flip
Rotation
Scaling
Crop
Translation
Noising

https://github.com/aleju/imgaug

44

Batch Learning
T

* On-line learning technique updates model weights by using back
propagation algorithm after every single error estimation for input data
sample

» Batch learning cumulates and averages Aw over several input data
samples

o Batch learning prevents to overfit the model and learning process is more
stable compared to on-line learning

45

Regularisation

* Extending Cost function by the term that summarise weights over entire
neural network model

 Most used are the L1 and L2 regularisation terms

Cost Function = Loss + Regularisation term

Li=a*) ||wl|] Ly=a*) ||w||’

 Regularisation penalised large weights coefficients which causes overfitting

e Usually we choose regularisation parameter about ~0.001

40

Dropout

e |dea of dropout is about to
randomly “switch off” some
neurones

e Dropout ration usually up to 50%
of all neurones in the NN

e Technigue prevents model to
overfit training dataset by using
low number of neurones

 Dropout is used only during the
learning phase. For testing phase
the dropout is turned off

47

v/

Y/
X%
K
e
(/\ X
)

“r Yy
"‘\ /,

5
Y/

‘

{)
7\
{
/’?
{)

A\
X
‘aV,
%
7
>

X

'l
7
zlf"
§’4':
::ézé
AKX
QA

(O

(a) Standard Neural Net

b) After applying dropout.

Batch Normalisation

e Various input data have very different value distribution which leads to the effect,
that some data have larger impact on NN decision making

 Normalising all the input channels for the same mean and std dev makes all input

channels “same important” »

Transfer Learning

* Training the feature extractors in
the middle of the DNN is the
hardest job

 TF works with the idea that
models which are designed for the
similar set of problems are more or
less the same

 Why to learn NN from scratch?
Use something that already exists!

49

 loss |+
T

softmax

conv2

conv1

|

Data and labels (e.g. ImageNet)] :

e

TRANSFER

Shallow classifier (e.g. SVM)

—

7 features

fc1

conv3

conv2

conv1

|

Target data and labels

BottleNeck

e |s reducing computational
complexity, while it keeps similar
quality of the feature extractions

capability | i 1256“’
3x3, 64 1x1, 64
. v relu
e Layer 256 channels in, | e 33, 64
l relu
256 Channels OUt, 3x3, b4 1x1, 256
conv 3x3x256: C%" . GIL)‘
~ — . similar
250X2506X3X3 0pS ~= 0.omil OPS all-3x3 < compledty bottleneck
——————————————— N (for ResNet-50/101/152)
conVv 1x1xo64: 256x64x1x1 = 16k https://stephan-osterburg.gitbook.io

conv 3x3x64: 64x64x3x3 = 36k
conv 1x1x256: 64x256x1x1 = 16k

50

CPU vs GPU vs TPU

* Central PU - general design to solve every mathematical problem
 Graphics PU - specialised design for parallelisation simple rendering tasks

* Tensor PU - matrix multiplication only dedicated HW with fast memory management

Compute Primitive

i
] EEEE]
] 7]
=
scalar vector tensor

https://iq.opengenus.org/cpu-vs-gpu-vs-tpu/
51

Other Architectures

VGG16

224 X224 x3 224 X224 x 64

112 x 128
« First widely used CNN

Irst widely use A I—
28 X 28 X 512 X T X512

7
Ax14% 512
14 x 14 % 51 é 1 x 1x4096 1x1x1000

 Compared to AlexNex,
VGG uses only 3x3 kernels
(11x11 and 5x5 in AlexNet)

@ convolution+RelLU

@ max pooling

71 fully connected+ReLlLU

~—~ softmax

Output

e 92.7% top 5 accuracy In VGG-16
imageNet Challenge A o [o el el el
"5‘ i o NN S MMM c| TS| DD S 883
Q. > >0 |>> 0 |2 >>0 |>2>>0 >>>0 & &L
c clc o |cle o |eclelelol|leleleclollelececloll|PPY
— ololal|o|loal |0 0oloa |0 oloja (oo ola [AlAalAa
Q0 Q0O QOO GGIS) OGNS

53

ResNet (Residual NN)

* Introducing bypass over neural x mosie T
netWO rk,S Iayers weight layer = 1
F(x) | relu N T
. . o i identity =

* Bypass helps to model identity Fx) 4 x ™ =

"

ieileilefe]

y = F(x,{W;}) + x.

e |dentity allows to bypass the
“vanishing gradient” problem for very deep CNN

§

o

- & & o > o '™ g
- -~ - -~ -~ e

nl L, E » = » w »
w

: e e

A

-
=

-

—

33 eonw, 2155

e Best known: ResNet52, ResNet152 =

H -t

* First ever trained DCNN with more than 1000 layers

54

DenseNet, PyramidNet

* Introducing bypasses between
layer groups through entire
architecture

e Currently best results on image
recognition challenges

np”

Network # of Params | Output Feat. Dim. | Depth | Traning Mem. | CIFAR-10 | CIFAR-100
NiN [1] - - - - 8.8 35.68
All-CNN [/] - - - - 7.25 33.71
DSN [1/] - - - - 1.97 34.57
FitNet [] 8.39 35.04
Highway [V] - - - - 7.72 32.39
Fractional Max-pooling [] - - - - 4.50 27.62
ELU [27] - - - - 6.55 24.28
ResNet [/] 1.7M 64 110 547MB 6.43 25.16
ResNet [/] 10.2M 64 1001 2,921MB - 27.82
ResNet [/] 19.4M 64 1202 2,069MB 7.93 -
Pre-activation ResNet [] 1.7M 64 164 841MB 5.46 24.33
Pre-activation ResNet [] 10.2M 64 1001 2.921MB 4.62 22.71
Stochastic Depth [1] 1. 7M 64 110 547MB 523 24.58
Stochastic Depth [10] 10.2M 64 1202 2.069MB 491 -
FractalNet [1] 38.6M 1.024 21 - 4.60 23.73
SwapOut v2 (widthx4) [(] 7.4M 256 32 - 4.76 22.72
Wide ResNet (widthx4) [7] 8.7M 256 40 775MB 497 22.89
Wide ResNet (widthx 10) [] 36.5M 640 28 1,383MB 4.17 20.50
Weighted ResNet [] 19.1M 64 1192 - 5.10 -
DenseNet (k = 24) [V] 27.2M 2,352 100 4,38 MB 3.74 19.25
DenseNet-BC (k = 40) [V] 25.6M 2,190 190 7,247TMB 3.46 17.18
PyramidNet (ov = 48) 1.7M 64 110 655MB 4.584+0.06 | 23.12+0.04
PyramidNet (v = 84) 3.8M 100 110 781MB 4.26+0.23 | 20.660.40
PyramidNet (ov = 270) 28.3M 286 110 1.437MB 3.73+0.04 | 18.25+0.10
PyramidNet (bottleneck, oo = 270) 27.0M 1,144 164 4,169MB 3.4810.20 | 17.01L0.39
PyramidNet (bottleneck, ov = 240) 26.6M 1,024 200 4,451MB 3.444+0.11 | 16.51£0.13
PyramidNet (bottleneck, ov = 220)) 26.8M 044 236 4,767TMB 3.404+0.07 | 16.37+£0.20
PyramidNet (bottleneck, o = 200) 26.0M 864 272 5,005MB 3.31+£0.08 | 16.35+£0.24

55

Recurrent Neural Nets

 Hopfield Neural Net ® M & (h)
* Long Short Term Memory rlj = l — l > l > I\
Neural Network
b & © - @
 Usage:
signal and text processing (o) (hy) 6
and generation
g i I Tl,
* RNN are extremely A A
demanding on memory Das

amount to remember partial
derivations of entire input %)
series

56

Encoders

e Architecture reduces input
Image into low dimensional
vector that extracts (stores)
information

 Upsampling section expand

stored information into output

Vector
.
i m ag e https://towardsdatascience.com/generating-digits-and-sounds-with-artificial-neural-nets-ca1270d8445f

N a]o[m
l
\
l
l

<

Convolutional Encoder-Decoder

Input Output

“
Pooling Indices y
A

e Applications:
Denoising
Data Compression
Semantic Segmentation

RGB Image B Conv + Batch Normalisation + RelU Segmentation

B Pooling I Upsampling Softmax

57 https://mi.eng.cam.ac.uk/projects/segnet/#publication

Generative Adversarial Network

2
z
Real ____destination _
Samples
E—

5
=
Latent :
Space =
C N
A ’," \\\‘ ‘;:
N D ',' Is D e o
. > Correct?
2 ™ % Discriminator 0 2
N / A ,
>®—’ : : o e iil:‘w e L b ¢
u A Generator Generated : E https://www.lyrn.ai/2018/12/26/a-style-based-generator-architecture-for-generative-adversarial-networks/
Fake : :
- - J Samples E | Morle}_.’:} Photos Zebras T Horses Summer 5_ Winter
| i Fine Tune Training 5

Noise

https://medium.com/@sh.tsang/review-gan-generative-adversarial-nets-gan-e12793e1fb75

horse) zebra -

.-

e L

2k Vi %;&‘ T
‘69‘ . - N -y P e
.\1-- AN s & I
y . "J‘ N o 5] “: . .u"1 “.‘ -
A

Photasraph Monet Van Gogh Cezanre

https://junyanz.github.io/CycleGAN/

58

Style Transfer

Optmize the Generated image w.rl. the Total Loss

AFexture Map

l 158 Layer

j\ N 310 Layer

e U G

L . -

 (Generates new image w.r.t. the
combination of the Content Loss
and the Style Loss

Content Image ’

L

Content Loss
Seheccnssayd :::::..
'
] s on
"'"'.-—:Ab:::"""
e e oo waw Y
........ g — Totailoss ww=wel
\ \ ES
Generated image 2 \ 3
o b P
—
Styse Loss
— | Sy

Styls Image

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-neural-style-transfer-ef88e46697ee

59

Neural Networks 1ools

TensorkFlow
e

 General mathematical graph framework
usually used for machine learning and
neural networks applications

* Fully open-source

e Supports Python and C++

e See https://www.tensorflow.org

o1

https://www.tensorflow.org

Py lorch

Framework for GPU matrix multiplication
acceleration and parallelisation.

Open source code
Supports Python and C++

See https://pytorch.org

62

PyTorch

Keras

* A high-level AP| wrapper framework
over existing machine learning
toolboxes

 Runs on top of TensorFlow, CNTK
¥ Keras

o Simplifies complex DL frameworks
into lightweight and easy to use API

¢ See https://keras.io

63

TensorR1T

» Platform for accelerating deep learning
interference on GPU

* Contains the CUDA compiler that
optimise neural network interference 1

on a currently installed graphic card :t
» ONNX - standard for NN models [_l:

* Not used for NN learning

¢ See https://developer.nvidia.com/tensorrt

oZ

https://developer.nvidia.com/tensorrt

There are more ...

Comparison

o
9 &

Learning:
Deployment: @ @
Languages: Python, C++ Python, C++ Python C++
Usage Difficulty: High Mid Low High

Good for: Pros Researchers Beginners Runtime

60

https://playground.tensorflow.org

References

i a:')](ﬂGOOd.r
and Aaron.

Deep Learning
Goodfellow, Bengio, Courville

MIT Press

http://www.deeplearningbook.org

68

http://www.deeplearningbook.org

References

[1] - Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:
1409.1556

[2] - He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770-778)

[3] - Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 4700-4708)

[4] - Goodfellow, |., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative
adversarial nets. In Advances in neural information processing systems (pp. 2672-2680)

[5] - Badrinarayanan, V., Kendall, A. and Cipolla, R., 2017. Segnet: A deep convolutional encoder-decoder architecture for image
segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), pp.2481-2495.

[6] - Gatys, L.A., Ecker, A.S. and Bethge, M., 2015. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576.

[7] - Han, D., Kim, J. and Kim, J., 2017. Deep pyramidal residual networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 5927-5935)

[8] - Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |. and Salakhutdinov, R., 2014. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1), pp.1929-1958.

69

