Deep Learning and **Convolutional Neural Networks**

Ing. Adam Ligocki

Course Supervisor: doc. Ing. Václav Jirsík, CSc.

Artificial Intelligence

Fully Connected Neural Network

Fully Connected Neural Network

 Single neuron represents a simple linear equation

$$y = f(w_1 x_1 + \ldots + w_i x_i + b)$$

• The neural network is a complex combination of these simple mathematical models

Fully Connected Neural Network

 Neural Networks are a kind of matrix multiplication representation

$Y_{10x1} = W_{10x100} * X_{100x1}$

Generally in Machine learning this technique is called "Linear Classifier"

Back Propagation

Back Propagation

vrstva L

 Back propag. is an algorithm to iteratively adjust weights w.r.t. total error to get better result in the next step

$$\Delta W_{jk} = -\alpha \frac{\Delta E_c}{\Delta w_{jk}} = -\alpha \sum_{s=1}^p \frac{\Delta E_s}{\Delta w_{jk}}$$

• The better result in the next step does not mean better result at the end of the learning

Chain Rule

$$\frac{\Delta E_s}{\Delta w_{jk}} = \frac{\Delta E_s}{\Delta y_k} \frac{\Delta y_k}{\Delta z_k} \frac{\Delta z_k}{\Delta w_{jk}}$$
$$E_s = \frac{1}{2} \sum_{j=1}^m (y_{sj} - d_{sj})^2 \qquad \frac{\Delta E_s}{\Delta y_k} = y_k - d_k$$
$$y_k = \frac{1}{1 + e^{-\sigma_k z_k}} \qquad \frac{\Delta y_k}{\Delta z_k} = \sigma_k * y_k (1 - y_k)$$
$$\frac{\Delta \sigma(x)}{\Delta x} = \sigma(x) * (1 - \sigma(x))$$

 $z_k = \sum_{j=1}^N x_j w_{jk} \qquad \frac{\Delta z_k}{\Delta w_{jk}} = x_j$

 $y_{k} = (y_{k} - d_{k})\sigma_{k}y_{k}(1 - y_{k})x_{j}$

Stochastic Gradient Descent

- Common FCNN has ~1000 weights -> calculate partial derivation of matrix of size 1000x1000
- Common CNN has ~10 000 000 weights -> Mission Impossible
- SGD is an idea of learning neurone by using only small number of randomly chosen partial derivatives of the Total Error w.r.t. weights

History

Perceptron and Fully Connected NN

- 1943 Mathematical model of neuron 1^w
 (Warren McCulloch and Walter Pitts)
- 1958 Perceptron discovery (Frank Rosenblatt)
- 1986 Back Propag discovery

Eye as a CNN

- Mammal eye consists out of several types of light-sensitive cells and signal processing neutrons.
- These neurones performs spacial differential functions over incoming signal from rods and cones
- For more informations search for "Retina structure" on Google

https://www.britannica.com/science/retinitis-pigmentosa

LeNet (1998)

Image from original paper Y. LeCun 1998

- Simple characters and numbers classification
- First ever "True Convolutional NN"

AlexNet (2012)

- First time ever the CNN outperformed other CV techniques
- The beginning of intensive research of the CNN topic

Timeline

٣	۳				
	Q				
	1				
0	Û				
٥					
0					
ĥ	Л		_		
56	٩Ņ	le	t		
	Т				
		-			
D	ha	1	G(2	

Why the AlexNet started it all?

1998

LeCun et al.

of transistors

2012

Krizhevsky et al.

of pixels used in training

10¹⁴ IM GENET

Convolution in Computer Vision

- Convolution is a mathematical operation which combines features of two input signals into single result
- In CV the 2D convolution is tho mostly used as a blurring (suppressing high freq) and edge (suppressing low freq) filters
- Convolution kernel size is usually of size 3x3 up to 11x11

https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/

Principle

- CNN is based on the idea of the feature extraction from the input image by using large number of small convolution kernels
- Low layers extracts simple geometrical shapes (usually edge detectors), higher lacksquarelayers detects more complex structures
- The output of the highest layer is processed by FC NN classifier

https://en.wikipedia.org/wiki/Convolutional_neural_network

Kernel Visualizations

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

activation map

32x32x3 image 5x5x3 filter

convolve (slide) over all spatial locations

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

32x32x3 image 5x5x3 filter

convolve (slide) over all spatial locations

consider a second, green filter

28

activation maps

We stack these up to get a "new image" of size 28x28x6! Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

7

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

7

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

7

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

Ν

Ν

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Output size: (N - F) / stride + 1

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

7x7 output!

Slide from: Fei-Fei Li & Justin Johanson & Serena Yeung

Convolutional Neural Network

- **3x3** filter, applied with stride 1
- **pad with 1 pixel** border => what is the output?

- in general, common to see CONV layers with
- stride 1, filters of size FxF, and zero-padding with
- (F-1)/2. (will preserve size spatially)
- e.g. F = 3 => zero pad with 1
 - F = 5 = 2 zero pad with 2
 - F = 7 = 2 zero pad with 3

 Map Pooling layer reduces the dimension of input layer while the operation does not reduces information in the signal

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Map Pooling

Activation Functions

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044

Activation Functions

10

ReLU (Rectified Linear Unit)

Leaky ReLU

-10

- + Simple to derivate
- Input value below 0 kills neurone

- + Does not have the dead zone
- + 10/10 machine learning engineers like Leaky Relu

10

10

Activation Functions

Softmax

$$\sigma(z)_{i} = \frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{k}}} \text{ for } i = 1, ..., K$$

- Replaces non-linear max operation on the output of NN
- Softmax is differentiable -> can be used in back propag
- Normalize the output vector

Learning CNN

Training Dataset

- Splitting the dataset into the Train, Validation and the Test sets
- For small number of learning data see the "Cross Validation"
- Model is trained on the "Train data"
- Score on validation data helps to monitor learning progress
- Score on test data gives the final performance for the trained model

Overfitting

- When NN learns for long enough on "small" dataset, it starts to memorise features specific for training data
- Overfitting effect grows with the complexity of the model
- See: Occam's razor
- To prevent overfitting use the model with the lowest validation error, not the training one

error

One HotEnd Encoding

- For every single class that NN should be able to classify there is one dedicate neuron in the output layer
- The output value '1' of the neuron says "This is my class", the output value '0' says "Definitely not my class".
- Representing many classes by single output value creates undesirable relation between neighbour values

https://blog.e-kursy.it/deeplearning4j-workshop

Train Data Shuffling

- The classes in the input data should be distributed through the entire dataset
- Clustering classes next to each other causes temporary overfitting for specific class

Augmentations

- Used for small number of training data
- Artificially generate synthetical data for training
- Artificial data helps to improve the training process and the model robustness
- Augmentation techniques
 Flip
 Rotation
 Scaling
 Crop
 Translation
 Noising

https://github.com/aleju/imgaug

- On-line learning technique updates model weights by using back propagation algorithm after every single error estimation for input data sample
- Batch learning cumulates and averages Δw over several input data samples
- Batch learning prevents to overfit the model and learning process is more stable compared to on-line learning

Batch Learning

Regularisation

- Extending Cost function by the term that summarise weights over entire neural network model
- Most used are the L1 and L2 regularisation terms
 - Cost Function = Loss + Regularisation term

$$L_1 = \alpha * \sum ||\mathbf{w}||$$

- Regularisation penalised large weights coefficients which causes overfitting
- Usually we choose regularisation parameter about ~0.001

$$L_2 = \alpha * \sum ||\mathbf{w}||^2$$

Dropout

- Idea of dropout is about to randomly "switch off" some neurones
- Dropout ration usually up to 50% of all neurones in the NN
- Technique prevents model to overfit training dataset by using low number of neurones
- Dropout is used only during the learning phase. For testing phase the dropout is turned off

(a) Standard Neural Net

(b) After applying dropout.

Batch Normalisation

- that some data have larger impact on NN decision making
- channels "same important"

• Various input data have very different value distribution which leads to the effect,

Normalising all the input channels for the same mean and std dev makes all input

			÷
n.	2		
υ	÷		1
	-		
1		_	1
		_	4
5	o —	_	
-	~ .	_	4
n	r	-	ł
~			
			1
			1
			1
			4
			4
			1
		- C.a	4
			4
			1
		- 67	1
			J
-	-	_	1
-	_	_	
			_

Transfer Learning

- Training the feature extractors in the middle of the DNN is the hardest job
- TF works with the idea that models which are designed for the similar set of problems are more or less the same
- Why to learn NN from scratch?
 Use something that already exists!

BottleNeck

- Is reducing computational complexity, while it keeps similar quality of the feature extractions capability
- Layer 256 channels in, 256 channels out,

conv 3x3x256: 256x256x3x3 ops ~= 0.6mil ops

conv 1x1x64: 256x64x1x1 = 16k conv 3x3x64: 64x64x3x3 = 36k conv 1x1x256: 64x256x1x1 = 16k

https://stephan-osterburg.gitbook.io

CPU vs GPU vs TPU

- Central PU general design to solve every mathematical problem
- Graphics PU specialised design for parallelisation simple rendering tasks
- Tensor PU matrix multiplication only dedicated HW with fast memory management

Compute Primitive

https://iq.opengenus.org/cpu-vs-gpu-vs-tpu/

Other Architectures

- First widely used CNN
- Compared to AlexNex, VGG uses only 3x3 kernels (11x11 and 5x5 in AlexNet)
- 92.7% top 5 accuracy in ImageNet Challenge

VGG16

lnp

ResNet (Residual NN)

- Introducing bypass over neural network's layers
- Bypass helps to model identity over the layer
- Identity allows to bypass the "vanishing gradient" problem for very deep CNN
- Best known: ResNet52, ResNet152
- First ever trained DCNN with more than 1000 layers

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

- Introducing bypasses between layer groups through entire architecture
- Currently best results on image recognition challenges

DenseNet, PyramidNet

Network	# of Params	Output Feat. Dim.	Depth	Training Mem.	CIFAR-10	CIFAR-100
NiN [18]	-	-	-	-	8.81	35.68
All-CNN [27]	-	-	-	-	7.25	33.71
DSN [17]	-	-	-	-	7.97	34.57
FitNet [21]	-	-	-	-	8.39	35.04
Highway [29]	-	-	-	-	7.72	32.39
Fractional Max-pooling [4]	-	-	-	-	4.50	27.62
ELU [29]	-	-	-	-	6.55	24.28
ResNet [7]	1.7M	64	110	547MB	6.43	25.16
ResNet [7]	10.2M	64	1001	2,921MB	-	27.82
ResNet [7]	19.4M	64	1202	2,069MB	7.93	-
Pre-activation ResNet [8]	1.7M	64	164	841MB	5.46	24.33
Pre-activation ResNet [8]	10.2M	64	1001	2,921MB	4.62	22.71
Stochastic Depth [10]	1.7M	64	110	547MB	5.23	24.58
Stochastic Depth [10]	10.2M	64	1202	2,069MB	4.91	-
FractalNet [14]	38.6M	1,024	21	-	4.60	23.73
SwapOut v2 (width×4) [26]	7.4M	256	32	-	4.76	22.72
Wide ResNet (width \times 4) [34]	8.7M	256	40	775MB	4.97	22.89
Wide ResNet (width × 10) [34]	36.5M	640	28	1,383MB	4.17	20.50
Weighted ResNet [24]	19.1M	64	1192	-	5.10	-
DenseNet $(k = 24)$ [9]	27.2M	2,352	100	4,381MB	3.74	19.25
DenseNet-BC ($k = 40$) [9]	25.6M	2,190	190	7,247MB	3.46	17.18
PyramidNet ($\alpha = 48$)	1.7M	64	110	655MB	$4.58 {\pm} 0.06$	23.12 ± 0.04
PyramidNet ($\alpha = 84$)	3.8M	100	110	781MB	4.26 ± 0.23	$20.66 {\pm} 0.40$
PyramidNet ($\alpha = 270$)	28.3M	286	110	1,437MB	3.73 ± 0.04	$18.25 {\pm} 0.10$
PyramidNet (bottleneck, $\alpha = 270$)	27.0M	1,144	164	4,169MB	$3.48 {\pm} 0.20$	17.01 ± 0.39
PyramidNet (bottleneck, $\alpha = 240$)	26.6M	1,024	200	4,451MB	$3.44{\pm}0.11$	16.51 ± 0.13
PyramidNet (bottleneck, $\alpha = 220$)	26.8M	944	236	4,767MB	$3.40 {\pm} 0.07$	$16.37 {\pm} 0.29$
PyramidNet (bottleneck, $\alpha = 200$)	26.0M	864	272	5,005MB	3.31±0.08	16.35 ±0.24

- Hopfield Neural Net
- Long Short Term Memory Neural Network
- Usage: signal and text processing and generation
- RNN are extremely demanding on memory amount to remember partial derivations of entire input series

Recurrent Neural Nets

Encoders

- Architecture reduces input image into low dimensional vector that extracts (stores) information
- Upsampling section expand stored information into output image
- Applications: Denoising Data Compression Semantic Segmentation

https://towardsdatascience.com/generating-digits-and-sounds-with-artificial-neural-nets-ca1270d8445f

https://mi.eng.cam.ac.uk/projects/segnet/#publication

Generative Adversarial Network

• Generates new image w.r.t. the combination of the Content Loss and the Style Loss

Style Transfer

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-neural-style-transfer-ef88e46697ee

Neural Networks Tools

TensorFlow

- General mathematical graph framework usually used for machine learning and neural networks applications
- Fully open-source
- Supports Python and C++
- See <u>https://www.tensorflow.org</u>

TensorFlow

- Framework for GPU matrix multiplication acceleration and parallelisation.
- Open source code
- Supports Python and C++
- See https://pytorch.org

PyTorch

Keras

- A high-level API wrapper framework over existing machine learning toolboxes
- Runs on top of TensorFlow, CNTK and Theano
- Simplifies complex DL frameworks into lightweight and easy to use API
- See https://keras.io

Keras

TensorRT

- Platform for accelerating deep learning interference on GPU
- Contains the CUDA compiler that optimise neural network interference on a currently installed graphic card
- ONNX standard for NN models
- Not used for NN learning
- See <u>https://developer.nvidia.com/tensorrt</u>

There are more ...

DNNX GLUON theano mannet DL4J Caffe

Noise: 20	
Batch size: 25	
REGENERATE	

Activation		Regularization		Regularization rate		Problem typ
Sigmoid		L1		0.001		Classificati

Test loss 0.109 Training loss 0.070

https://playground.tensorflow.org

This is the output from one neuron. Hover to see it larger.

Colors shows data, neuron and weight values.

-4 -3 -2 -1 0 1 2

Show test data Discretize output

Ion

180	 0

Deep Learning Goodfellow, Bengio, Courville **MIT Press**

http://www.deeplearningbook.org

References

[1] - Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:* 1409.1556

[2] - He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778)

[3] - Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 4700-4708)

[4] - Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative adversarial nets. In *Advances in neural information processing systems* (pp. 2672-2680)

[5] - Badrinarayanan, V., Kendall, A. and Cipolla, R., 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE transactions on pattern analysis and machine intelligence*, 39(12), pp.2481-2495.

[6] - Gatys, L.A., Ecker, A.S. and Bethge, M., 2015. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576.

[7] - Han, D., Kim, J. and Kim, J., 2017. Deep pyramidal residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5927-5935)

[8] - Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., 2014. Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine learning research*, *15*(1), pp.1929-1958.

