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Abstract—Features detection plays a significant role in many 

computer vision tasks. There exist a plenty of various methods 
for features detection in an image processing domain. 
Symmetric features form a substantial class of them which takes 
an advantage of robust approach and fast implementation. In 
this paper a basic concept of a mirror and rotational symmetry 
is introduced and several implementation aspects are discussed. 
Symmetry detection process is transparently compared to the 
selected standard approach and results are demonstrated on the 
rotational symmetry task. 

Keywords—Feature point, Mirror Symmetry, Point of 
Interest, Rotational Symmetry, Symmetry. 

I. INTRODUCTION

ETECTION of features in images is one of the most 
important and the most frequently used activity in order 
to understand content of an image. There was performed 

a significant research particularly on the field of so-called 
point of interest in the past [1], [2]. Several other concepts 
have emerged from time to time when better performance or 
higher accuracy was required [3]. The recent research 
attention has been paid for so-called symmetry constellations, 
which gives a new idea about detection of symmetrical points 
of interest [4], [5]. The basic concept of symmetry features 
detection is introduced in this paper besides implementation 
issues which are described at the end of the paper. 

II. CONCEPT OF SYMMETRY DETECTION

The basic concept of symmetry detection in images of the 
real world is based on straightforward idea of matching 
symmetry couples of feature points. There is a plenty of 
robust and efficient methods for points of interest detection in 
the modern image processing area [6]. Symmetry importance 
of each pair is assessed on the basis of the position, 
orientation and optionally scale of the features. All obtained 
symmetries are accumulated in a voting space similar to the 
Hough transform where the major symmetries are localized. 

A. Problem Background 
As it was mentioned, many robust and effective methods 

for feature point detection have been developed and the most 
of them have already been implemented as well. These 
methods usually provide a dense set of feature points over the 
image. In the past a lot of effort has been dedicated only to 
matching feature points between individual images of a 

Manuscript received February 28, 2013. This work was supported by the 
grant Research of Modern Methods and Approaches in Automation from the 
Internal Grant Agency of Brno University of Technology (FEKT-S-11-6). 

K. Horak is with the Department of Control and Instrumentation, Brno 
University of Technology, Brno, 61600, Czech Republic (phone: 00420-5-
4114-6417; fax: 00420-5-4114-6451; e-mail: horak@feec.vutbr.cz). 

sequence. Pairing of feature points in only one isolated image 
was slightly suppressed in the past. 

The methods for feature point detection often result in list 
of records related to detected points of interest. Each record 
represents one feature point and usually contains a foursome 
of values: image coordinates x and y, orientation � and scale s
of the point. The last two values of orientation and scale are 
normalised to ensure independence of these parameters. A set 
of orientation and scale invariant feature points detected in a 
robust and effective way, moreover with a high repeatability, 
is well suited input for symmetries detection [7]–[9]. 

There are the two major classes of symmetry in real world 
images. First of them is a so-called direct symmetry, which is 
related to the pairs of similar feature points only under 
translational and rotational transform. A simple example of 
the direct symmetry is a car wheel. The similar feature points 
are spread around the perimeter of the wheel. So-called 
mirror symmetry is the other kind of the general symmetry, 
which is related to such pairs of different feature points where 
the first feature point matches only with the mirrored version 
of the other one. Human faces and butterfly’s wings are good 
examples of mirror symmetry, because almost each detected 
feature point has its own mirrored twin on the other side of 
the object. Fig. 1 shows both the direct symmetry and the 
mirror symmetry example. 

A descriptor of the mirrored feature point is in [7] defined 
as a descriptor of mirrored copy of the local image patch 
associated with the original feature point. Matching pairs of 
feature points then generate a set of matched pairs for the 
next processing step. Following chapters discuss the details 
of detecting both the direct and the mirror symmetries. 

B. Feature Points 
A feature point is similar to the idea of point of interest, i.e. 

each feature point can be defined as a pixel with local patch 
very dissimilar to the nearest neighbourhood. The feature 
points are generally computed by means of some robust and 
rotationally invariant method with high repeatability such as 
well-known SIFT method [10]. In addition to feature point’s 
coordinate values x and y, the orientation � of each feature 
point has to be always determined in contrast to the scale 
value s, which is important only if some scale invariant 
method is used for feature points detection. 

Fig. 1.  Input images for direct (left) and mirror (right) symmetry detection. 
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Nevertheless, assume the i-th feature point in the image 
contains all four values in general and so forms a point vector 
pi = (xi,yi,�i,si). The vector pi describes unambiguously 
location, orientation and scale of the i-th feature point 
detected in the image. Further a descriptor usually denoted ki
is computed for each vector pi. These descriptors represent 
appearance of the local image patches around xi and yi
coordinates. There are many feature descriptor methods 
designed for matching purposes and based on the very 
different theory in the literature [3], [6]. 

C. Mirror Symmetry 
The mirror symmetry case is in [7] denoted as bilateral to 

emphasize similarity between a certain feature point pi in an 
image and some second feature point pj in the same image but 
flipped over given axis. It means two feature points are 
treated as a feature pair (pi, pj) only if original image patch of 
the first point matches with the mirrored image patch of the 
other one. There is only one true feature point pj related to the 
other feature point pi in the image containing an object of the 
mirror symmetry. 

For matching purposes a mirrored feature descriptor mi is 
computed for each known descriptor ki. To obtain a mirrored 
version of the original image patch we can choose an 
arbitrary mirroring axis because of orientation normalisation. 
A construction of the normalized and mirrored versions of the 
original feature point is schematically shown in the following 
Fig. 2. Formation of the mirror feature mi is only illustrative 
in the mentioned figure. In fact, there are two fundamentally 
different ways how to compute the mirrored feature 
descriptors mi. The first approach is to simply flip the original 
image patch related to the descriptor ki about x or y axis and 
compute additional (mirror) descriptor mi. This approach is 
clearly very simple and naïve but it has not been always 
efficient.

Fig. 2.  The detection of the symmetric pair (pi,pj).

The other approach requires knowledge of a structure of 
the feature descriptor ki, because the mirrored descriptor mi is 
generated directly by modifying all the proper values in ki.
Clearly, this way is substantially more efficient in comparison 
to the previous one, but it is not so straightforward. Moreover 
it is usable only with the convenient descriptor’s structure 
e.g. the SIFT fits this demands completely. 

The next processing step is to recognize potentially 
symmetric features and to form a set of pairs (pi, pj) of 
feature points related to ki and mj descriptor respectively. 
Note that matching the descriptor ki with the descriptor mj
gives the same result as matching the descriptor kj against the 
descriptor mi. It follows the pair (pi, pj) is always formally 
interchangeable with the reversed pair (pj, pi), because they 
are truly equivalent. 

The amount of symmetry of arbitrary pair (pi, pj) is 
quantified by symmetry magnitude Mij [7] defined as: 
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where �ij denotes an angular symmetry weight, Sij denotes 
a scale weight and finally Dij denotes a distance weight. In 
accordance with the previous equation, the symmetry value of 
each pair (pi, pj) is assessed as a function of the relative 
position of the feature points in the image, their orientation 
and scale. All the three weights newly introduced as the 
angular, scale and distance contributions are defined by the 
following equations as: 
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where angles �i and �j represent angles between main 
orientations of the feature points pi and pj and the x axis and 
the symbol 
ij corresponds to an angle between a line joining 
pi and pj and the x axis and so it represents a relative 
orientation of the pair [7]. Concerning previous equation (3), 
the scale weight Sij quantifies the relative similarity in scale 
of the two feature points. Finally, the letter d in the last 
equation of the distance weight stands for the distance 
separating the feature pair. It follows the distance weighting 
function Dij penalizes matching pairs that are far off the 
symmetry axis and vice versa (i.e. favours such pairs that are 
closer to the axis). 

The distance weight Dij was originally motivated by 
psychophysical findings that symmetric features close to the 
symmetry axis play more important role in human perception 
of symmetry than outlying features [11]. In fact, from a 
computer vision point of view, it is not necessary to use 
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parameter Dij explicitly and so it can be completely omitted in 
the equation (1) or equally value of Dij can be set to 1. 

At this point each pair (pi, pj) of all detected feature points 
in the image has assigned corresponding symmetry 
magnitude Mij. The higher similarity of the descriptors ki and 
mj are, the higher value Mij becomes. It means the symmetry 
magnitude quantifies the strength of symmetry of an 
individual pair of feature points. Lastly a symmetry map can 
be generated by accumulating individual values of symmetry 
magnitude Mij for all detected feature points. The 
accumulation process is performed in the Hough style of a 
voting space. Symmetry maps related to the two input images 
depicted in the Fig. 1 are shown in the next Fig. 3. There are 
three different images of symmetry maps for each input 
image in the figure below depending on the � parameter. The 
� value controls a sensitivity of an algorithm about a radial 
symmetry. The smaller � value is, the less sensitive algorithm 
is.

More specifically lower values of � accepts feature points 
of the mirror symmetry (i.e. bilateral) whilst higher values of 
� accepts strictly only the radial feature points. As you can 
see from the two sets of bottom images, � values higher than 
3 have only small influence on symmetry map whilst smaller 
�  values results in significantly different symmetry maps. 

Fig. 3.  The symmetry maps of the input images for � values of 1, 2, 3 and 4 
from the top to the bottom respectively. The “wheel” input image relates to 
the left column and the “butterfly” input image to the right column.

The above mentioned butterfly image is the exemplary case 
of the mirror symmetry. Each pair of corresponding features 
in such image represents a small contribution of an imaginary 
symmetry axis. More explicitly the two dark points in the 
lower right image in the Fig. 3 unambiguously defines their 
mid-point, which lies on the major axis of the butterfly. In 
this way the dominant symmetry axis in the image can be 
computed by the linear Hough transform applied on all mid-
points of the symmetry pairs. In fact each symmetric pair 
casts a vote in a Hough accumulator weighted by 
corresponding symmetry magnitude Mij. The accumulator is 
processed in a proper way of a non-maximal suppression and 
dominant symmetry axes are then detected as isolated peaks. 

D. Rotational Symmetry 
A detection of rotational symmetry (somewhere radial) is 

slightly less complicated in comparison with the mirror 
symmetry, because there is no need to generate the mirrored 
version mi of the original feature descriptor ki [12]. The 
rotational symmetry is detected directly by matching each 
feature descriptor ki against all remaining descriptors kj. If 
normalized vectors of an arbitrary pair of the feature points 
(pi, pj) are not parallel there is a point about which they are 
rotationally symmetric. Further if more such pairs are present 
in the image they define a central point of the rotational 
symmetry. Formally it is done by omitting the 
ij value in the 
equation (2) corresponding to an angle between the line 
joining pi and pj and the x axis. 

Results of the rotational symmetry detection were shown in 
the previous Fig. 3 depending on the mentioned � value. 
Crucial issue for the next processing step is to obtain a binary 
representation of the symmetry map. Almost arbitrary 
segmentation method can be used because all rotational 
symmetry points are represented by significantly darker or 
brighter spots than the others points in the symmetry map. 

The three binary representations of the previous images of 
symmetric maps are shown in the following Fig. 4. It is clear 
that several different threshold values � were used to obtain 
more or less messy images with the rotational symmetry 
points. Similarly as in the previous case of mirror symmetry 
this binary representations can be used as input for the Hough 
transform. As we are interesting in the rotational symmetry 
detection we have to use, however, the circle Hough 
transform. 

All the three accumulators of the circle Hough transform 
corresponding to the binary images in the Fig. 4 are depicted 
in the following Fig. 5. Processing of the accumulators are 
the same as in the previous case i.e. non-maximal suppression 
followed by the peaks detection. Number of peaks detected 
depends on implementation and is almost arbitrary. The main 
difference between Hough transform applied on the pure edge 
image (e.g. by the Canny edge detector) and the symmetry 
map is that in the first case all circles presented in the image 
are detected whilst only circles with the symmetrical features 
are taken into account in the other case. Because of the 
feature descriptors ki and mi computation and also of the 
Hough transform usage, the effectiveness of such image 
processing method for symmetry detection is not always 
enough sufficient. 
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Fig. 4.  The binary representations of the symmetry maps for thresholding �
values of 0.2, 0.3 and 0.4 respectively. The “wheel” input image relates to the 
left column and the “butterfly” input image to the right column again. 

Fig. 5.  Three accumulators of the circle Hough transform related to the three 
previous binary representations of the “wheel” input image.

There are rather more effective methods of so called “Fast” 
Hough transform in the image processing area, but this step is 
still the bottleneck of the processing chain. Due to 
computational problem mentioned in the previous paragraph, 
several aspects for process speed-up are discussed in the next 
two chapters. 

III. MODIFICATION TOWARDS ROBUSTNESS

A robustness and stability of the symmetry detection 
process can be simply a crucial aspect in some application. 
For example scientific evaluation of the symmetrical features 
in organic substances is often very sensitive about noise in an 
image. In our case of the rotationally symmetric car-wheel in 
the Fig. 1, at least two evident approaches exist. First, a direct 
computation of the edge image by some of well-known 
methods can be used. It is not important whether the edge 
image was generated either by the simple Sobel operator or 
by the more robust Canny operator or even by some 
morphological operation. The differences between results of 
these methods are not significant for the next symmetry 
detection. More important is difference between first 
approach of the edge image computation and the other 
approach of the symmetry map generation. 

Suppose the Canny edge detector as a convenient method 
for robust edge detection in our input image even though it is 
very time consuming way. Besides this edge image we can 
use the symmetry map with approximately same 
computational costs as an input of the Hough transform for 
circles detection. Both input images are shown in the next 
Fig. 6. 

Among others a density and a structure of pixels in the 
input image affect the resulting accumulator of the Hough 
transform. Each one pixel in the input image increases energy 
of the output accumulator. The both accumulators of the 
Hough transform for circle detection related to the images in 
the Fig. 6 are shown in the next Fig. 7. 

Fig. 6.  The Canny edge image (left) and the symmetry map (right) as the 
alternative inputs of the Hough transform.

Fig. 7.  The dense accumulator related to the Canny edge image (left) against 
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the sparse accumulator related to the symmetry map (right).
As can be seen from the previous figure, the accumulator 

based on the symmetry map (bottom image) is not so much 
cluttered as the accumulator based on the standard Canny 
edge detector (top image). Generally speaking, the more 
cluttered accumulator is, the more time next processing step 
spends. And furthermore, the more complicated is also 
recognition of individual (partially isolated) peaks in the 
accumulator. Moreover, because of the Hough transform is 
very time consuming in general, it is appropriate to generate a 
sparse accumulator as possible. It means the accumulator has 
to have a very low number of non-zero elements, because 
only such elements play role in the next step of seeking for 
maximum value and the rest elements of zero values are 
omitted. Similarly, also the accumulator matrix can be simply 
thresholded by considering only pixels of values over the 
predefined limit. In such case, finding of maximal element 
can be extremely speeded-up. 

Using some additive “speed-up” mechanism or not, results 
have to be the same. Although very different images were 
used as the inputs of the Hough transform, the same peak was 
detected as the centre point of the car-wheel. Relevant peaks 
are depicted by a pair of dotted lines directly in the images of 
the both accumulators in the Fig. 7. 

IV. MODIFICATION TOWARDS SPEED

A speed of a symmetry detector implementation generally 
depends on several different and principally independent 
aspects as well. Very crucial is a selection of an appropriate 
feature point descriptor. In order to achieve robust, 
rotationally and scale invariant descriptor we usually chose 
some well-known and often implemented method as the 
already mentioned SIFT (Scale Invariant Feature Transform) 
[10]. Nevertheless, to achieve a reasonable speed of the 
implementation some alternative descriptor method should be 
used instead of computational expensive one. For example 
the SURF (Speeded-Up Robust Features) method [13] suits to 
the both accuracy and speed, but it is not so simple to 
compare such different methods as the SIFT, SURF and some 
others. The SURF method takes advantage of an integral 
image [14], [15] which often satisfies time requirements. The 
detection of feature points is then performed on the basis of 
the Hessian matrix H(x,�) formed by a convolution of the 
input image and second derivation of the Gauss function 
G(�). Such similar approaches are significantly more 
effective but only for a limited set of applications. 

Another aspect to speed-up the mentioned method for 
symmetry detection is to remove bottlenecks. In our case it 
should be goniometrical and exponential functions in 
equations (2), (3) and (4). This can be achieved by a priori 
computed look-up table with sufficiently dense set of values. 
For the circular symmetry detection, of course, is much more 
effective to use the symmetry map as the input of the Hough 
transform instead of the more general edge image. 

V. CONCLUSION

The basic concept of the symmetry constellations [7]–[9] 
has been introduced and further the two major types of 

symmetry have been discussed in the previous chapters. A 
theory of symmetrical features extraction is relatively new in 
the area of computer vision so it is encouraged to improve 
known implementations and to develop some original ones as 
well. A very high number of potential applications [14]–[15] 
can yields from the symmetry detection methods. 

Only small portion of attention was also paid for 
robustness and speed aspects of the symmetry features 
detection at the very end of the paper. Besides theoretical 
basics, also several ideas about robustness and speed of 
algorithms for symmetry point detection have been shortly 
discussed. The important role of the paper was to 
schematically illustrate significant differences between two 
basic types of input images for the Hough transforms. An 
approach of symmetry maps as an input of the Hough 
transform was definitely selected as much more convenient 
than the standard edge-based approach, which have more 
general purpose. 
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